
Critical dynamics of displacive structural phase transitions and light and neutron scattering

below Tc

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 2397

(http://iopscience.iop.org/0953-8984/2/10/007)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 2397-2410. Printed in the UK 

Critical dynamics of displacive structural phase 
transitions and light and neutron scattering below Tc 

P N Timonin and G Y Shitov 
Physics Research Institute, Rostov University, 194 Stachki, Rostov-on-Don 344104, 
USSR 

Received 23 January 1989, in final form 28 July 1989 

Abstract. The critical dynamics of the displacive structural phase transitions with the short- 
range interaction and one-component order parameter in the scaling region below T, has 
been studied. 

The two-point retarded correlators of the order parameter and its square describing the 
spectral shape of light and neutron scattering have been calculated. It is shown that the 
observed anomalies in the low-frequency scattering near T, are caused by the critical slowing 
down of two-particle collective excitations-the fluctuations of the phonon density, and their 
coupling with soft phonons. 

1. Introduction 

Structural transitions in weakly anharmonic crystals are referred to as displacive tran- 
sitions when lattice distortions result from the ‘freezing’ of atomic displacements cor- 
responding to some phonon coordinate. These transitions are singled out in a special 
class, mainly owing to the dynamics of the order parameter fluctuations. In the case of 
displacive transitions these fluctuations, unlike other known types of phase transitions, 
are propagating excitations (at least away from T,), i.e. soft optical phonons. The 
lines with decreasing (at T+ T,) frequency (the soft modes) corresponding to these 
excitations are found in the light and neutron scattering spectra in many crystals under- 
going second-order phase transitions (Scott 1974, Fleury and Lyons 1981). However, 
the concept of quasi-harmonicity of soft phonons appeared to be invalid near T,, since 
in approaching the transition point the soft-mode frequency does not tend to zero and 
it is smeared out accompanied by the formation and growth of the dynamic central peak; 
this is especially evident in the light scattering spectra (Fleury and Lyons 1981). These 
changes in the low-frequency spectrum may be qualitatively described as a result of the 
coupling of soft phonons with some relaxing degree of freedom (Ginzburg et a1 1980), 
but it seems impossible to interpret this sensibly since the relaxation processes really 
occurring in solids such as the diffusion of impurities and thermal conductivity are 
extremely slow and the anomalies in the scattering spectrum up to Raman frequencies 
cannot account for this influence. 

At the same time, together with the fluctuations of the order parameter q for soft 
phonons, there are some other slow critical excitations with characteristic phonon 

0953-8984/90/102397 + 14 $03.50 @ 1990 I O P  Publishing Ltd 2397 



2398 P N Timonin and G Y Shitov 

frequencies-the q2 fluctuations. (We shall consider only the transitions with one- 
component q .) Moreover, the critical light scattering results from dielectric tensor 
fluctuations of the following form: 

6&(X) = a[($(x) - (q2(x))] = a Sr$(X) 

where a is an invariant tensor and the term linear in q is, as a rule, prohibited by the 
symmetry of a disordered phase. The validity of this relation at all temperatures should 
be emphasised (note that the disordered phase symmetry group also defines a q- 
dependence of the Landau-Ginzburg Hamiltonian at all T). At T > T,, such 6~ implies 
two-particle scattering which can be described in the mean-field region as difference and 
summation two-phonon processes. Then the appearance of the soft mode below T, 
results from the linearisation of 6 q 2 ,  as qs = (q) is non-zero: 

6p2 = bq‘2 + 2 q s q ‘  cp’ = 9 - q s  = - q I 2  - W2). 
Thus, at T < T, the tensor of full intensity scattering turns into the sum of the one- and 
two-particle contributions along with the inference term: 

Z(k) - (&(k) 6&*(k))  = a2 d 3 x  exp(i kx) i 
x [ ( h t 2 ( x >  6cpt2(o)) + 4qs(q’(x)  b ’ 2 ( 0 ) )  + 4q3qr(x)q’(0))1. 

In the mean-field region T, - T * T,Gi (Gi is the Ginzburg parameter (Patashinsky and 
Pokrovsky 1982)) the last one-phonon term (soft-mode intensity) becomes much larger 
than the intensity of the two-phonon summation and difference scattering processes 
(Sq”(x) S q t 2 ( 0 ) )  and the interference term q,(q’(x) SV’~(O)). In this region, simple 
perturbation theory estimates give 

T Gi 
T, - T 

- 1’2 q: 1 d3x (qf(x)q’(0)). 

It follows from this estimate that, on the boundary of the scaling region 
T, - T - T,Gi, the contributions from one- and two-particle processes become of the 
same order. As shown by Sakhnenko and Timonin (1983), the merging of the thresholds 
of difference and summation two-phonon processes in the scaling region at T > T, gives 
rise to new twc-particle excitations-phonon package density fluctuations-the critical 
slowing down of which leads to the appearance of an abnormally growing central dynamic 
peak in the Raman spectrum of the disordered phase. In the critical region below T, the 
spectrum will represent the superposition of the contributions, which are comparable in 
magnitude, produced by the scattering by soft phonons and by the fluctuations of the 
phonon density, and it seems reasonable to suppose that this superposition results in the 
soft-mode smearing observed in the Raman spectra near T,. 

Similar but less pronounced anomalies in neutron scattering spectru may also be 
accounted for by the influence of the phonon density fluctuations. The immediate 
scattering of neutrons by soft phonons, with larger transferred wavevectors occurring 
both above and below T,, indicates the deviations from quasi-harmonicity in the soft 
phonon’s dynamics directly observed in this case. These deviations, which manifest 
themselves in the appearance of the anomalous low-frequency contributions, and the 
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broadening and saturation of soft mode may be interpreted as the results of the inter- 
action of soft phonons with the phonon density fluctuations, this interaction increasing 
near T, owing to the convergence of their characteristic frequencies. 

This concept of the critical dynamics of displacive phase transitions and of the spectra 
anomalies in the scaling region was considered by Bruce and Cowley (1980) in the 
framework of the dynamic scaling hypothesis. However, such a qualitative approach is 
obviously insufficient to interpret the experimental data which are indicative of the 
existence of various characteristic times in the critical fluctuation dynamics. In such cases 
the quantitative evaluation of the spectra shape requires the calculation of the two-point 
retarded correlators of the order parameter and its square in the scaling region. In 
the present work such calculations at T < T, have been carried out for the displacive 
structural phase transitions with one-component order parameters by the renor- 
malisation group technique in three dimensions using the results of Sakhnenko and 
Timonin (1983) for T > T,. 

2. Temperature vertices and correlators below T,  

The structural phase transition with the one-component order parameter q proportional 
to some phonon coordinate may be described by the following effective Hamiltonian: 

where n(x) is the momentum density field canonically conjugated with the fluctuation 
field of order parameter q ( x )  and t - T - T,. 

Following the approach of Sakhnenko and Timonin (1983), we shall also utilise 
quantum formalism with its rather simple diagram technique for calculating Matsubara's 
temperature correlators. In the retarded correlators obtained by means of analytical 
continuation from the discrete imaginary frequencies, we shall proceed to the classical 
limit in the region of small frequencies o < T,h-' which we intend to study. At the same 
time, it should be noted that the absence of the coupling of q ( x )  with the acoustical 
phonons and energy density fluctuations in X (equation (2.1)) limits the range of 
applicability of the present theory to frequencies much greater than the characteristic 
acoustic and thermal frequencies. 

The phase transition described by the quantum Hamiltonian X (equation (2.1)) with 
the conjugate field ~ ( x )  and q ( x )  is the Bose condensation of q ( x ) .  Subtracting the 
classical condensate q = (1/V) J d3x q ( x )  from q(x ) ,  q ( x )  = q + q ' ( x ) ,  we obtain 

X = VF,(t, q) + X' 
F,(z,  y )  = i tq2 + tuq4 (2.2) 

(2.3) 

F ( t ,  q) = F o ( t ,  y )  - (l/pV) ln{Tr[exp( --/3X')] p = T-'. (2.4) 

The thermodynamic potential density F( z, q) determines the static properties of our 
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model, and in particular the values of the spontaneous order parameter qs = q s ( t )  and 
the susceptibility ~ ( z ) :  

a F ( z ,  ( P s > / a q s  = 0 x - ' ( t >  = d 2 F ( t ,  q,,>/aq:. (2.5) 
To describe the dynamic properties of the model in the ordered phase ( T  < T,, q,, # 

0), it is necessary to find Matsubara's correlators of the field q ' ( x )  with the density 
matrix exp( - p X ' )  where, in X' (equation (2.3)), q = qs.  However, we shall consider 
the correlators at arbitrary q that enable us to use their values at q = 0 (Sakhnenko and 
Timonin 1983) and to find the equation of state (2.5) and qs( t ) .  

Then we consider the following one-particle irreducible vertex functions: 

(2.6) x exp[i(K,Y,)I @2(Y,))y 1PI 

GP) = j d4~exp[i(~~)1(g,'(~)p?'(0))' (2.7) 

x = {x, o} 
q'(X) = exp(oX') q'(x) exp(-ax ' ) .  

The angular brackets with the prime on the right-hand side of (2.6) denote averaging 
with the density matrix exp(-bX') and the subscript 1PI to these angular brackets 
denotes that the diagrams that can be cut into two parts across internal line and those 
without internal lines (their contribution corresponds to the term am+nFo( t ,  q)/ 
(aqm a t n )  in the left-hand side of (2.6)) are absent in the corresponding sum of the 
diagrams with m tails and n angles. 

In the definition of vertices (equation (2.6)), m and n are arbitrary non-negative 
integers, except that (m,  n)  = (0, 0 ) ,  (1,0), (2,O). The vertex T l , o  cannot be found via 
the average of q ' since (q ' (x))' = 0 and the 1PI vertex r2,0(P)  is the inverse correlator 
G(P) (equation (2.7)): 

0 < o < p P = (p, U [ }  ( P X )  = px - o w /  

r2 , , (P)  = G-'(P) = t + 3uq2 + p 2  + M U :  - X ( P )  (2.8) 
as the self-energy part X ( P )  is the sum of the 1PI diagrams with two tails and t + 3uq2 = 
a 2 F o ( T ,  q) /W2.  

The following equalities serve as the basis for our further considerations: 

F,,,(t, q) = 1 3 ~ + ~ F ( t ,  q ) / d q m  d z n  

= lim [rm.n(P1, .  . . , P,; K1, .  . . , Kn) /w;=w~=o]  
P P O  
k,+O 

(2 * 9) 

(2.10) 
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(2.11) 

They are valid at all values of z and cp, complying with the condition d2F(t ,  q)/ 
dcp2 > 0. The proof of the relations in (2.9) as for cp = 0 (Itzykson and Zuber 1980) and 
cp = cpps (Patashinsky and Pokrovsky 1982) is based on the possibility of representing 
F ( t ,  cp) at the region of z, q values defined above as the Legendre transform of the 
potential @(T, h) (at V-, E ) :  

(2.12) 

F(t7 cp) = 4(r7 h) + hcp (2.13) 

The zero Fourier component of cp(x) in (2.12) is a C-variable and the trace also 
contains the integration over this variable. By means of (2.13) the derivatives Fm,, may 
be expressed in terms of Gm,, = dm+"q5/(dhm dzn) .  For example 

h = d F / d q  = dFo/dcp + (dX'/dcp)'. 

(2.14) 

In turn, the derivatives +,,,can be expressedvia the connected field correlators ~ ( x )  
and lcp 2(x) thermodynamically conjugated with h and t, respectively: 

Here the angular brackets denote averaging with the density matrix from (2.12) where 
h = d F / d q , .  

When considering the diagram expansion of Fm,, determined by (2.14) and (2.15) it 
should be taken into account that the Wick theorem is not valid for the field q(x),  as its 
average is non-zero. In fact, from (2.13)-(2.15) it follows that 

cp = - @4W)Ih=JF/Jq = ((Ax)), 

Therefore, we may shift the q(x) field in (2.15): ~ ( x )  = q + @ ( x )  which gives 

(2.16) 

where 4,,, are the correlators obtained from (2.15) by substitution of q ( x )  by @ ( x ) .  The 
Hamiltonian of the field @(x) becomes 

j [ (;; ;7 c j  + l(z+3uq2)cj2 +i(Vcj)2 +ucpcj3 +4ucj4 . (2.17) 

Substituting (2.16) into (2.14), one can make certain that the results of such asubstitution 
are only the replacement of Q,,, by &,,R in (2.14), except for the expressions for Fo,l 
and F1,l where the extra terms hp2 = dFO/dz and cp = d2F0/(dqdz) appear. Thus the 

1 % =  d3X 
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Figure 1. 

derivatives Fm,n are expressed by the connected correlators of the (2.15) type, and owing 
to the structure of the right-hand sides of (2.14) their diagram expansion does not contain 
the diagrams that can be cut across one line into two parts, both containing tails 
and angles. Yet, this expansion contains one-particle reducible diagrams where a part 
without external tails and angles or the external field a F / a q  - a F o / a q  = ( d X ’ / d q ) ’  
may be cut off across one line. Such diagrams in expansion of Fz,o are shown in figure 
l(a),  where d F / a q  - a F o / d q  is indicated by a cross and the sum of a one-tail 1PI 
diagram-rl,o-by a shaded circle. The block diagram representation of in 
figure l(b) gives 

where W is obtained from % (equation (2.17)) by dropping the term linear in @ and 
the angular brackets with two primes denote the averaging with the density matrix 
exp( -@t”). As W is of the same form as X ’  in (2.3) and only 1PI diagrams are present 
in the expansion of the external field ( d X ’ / d q ) ’  (owing to the absence of the zero 
Fourier component in the field q ’ ( x ) )  then, in the thermodynamic limit V+ CC when the 
constraint J d3x q ’ ( x )  = 0 becomes insignificant in calculating diagram contribution, we 
obtain Tl,o = ( d X ’ / a q ) ’ .  Meanwhile, it is quite evident that enters into the diagram 
with a sign opposite to that of the external field that leads to the mutual cancellation of 
such one-particle reducible diagrams as those in figure l(a).  

Thus the diagram expansion of Fm,n is obtained by dropping all one-particle reducible 
diagrams in the expansion of & n (  - & J m ,  including the diagrams with the external 
field. The remaining diagrams differ from the 1PI diagrams appearing in the definition 
of Tmn (equaLions (2.6)-(2.8)) only in the zero external momenta and frequencies, 
because W ( X ”  in (2.17) without the external field) is of the same form as X ’  in (2.3). 
As in (2.6)-(2.8) the ‘non-diagram’ contribution is equal to dm+’Fo/(aqm at”), which 
results in (2.9). It should be noted that the limit in (2.9) is taken after the limit V+ m. 

The important result of the consideration given above is the possibility of substituting 
q ’ ( x )  correlators in (2.6)-(2.8) by q ( x )  correlators with the Hamiltonian X - ( d F /  
aq)J-d 3x q (x ) .  After such a substitution, Tm.n is easily differentiated with respect to q. 
As a result the factor F2,0J-d4x q ( x )  appears in the correlator that corresponds to the 
addition of the tail with zero momentum and frequency. Thereby (2.10) is justified and 
(2.11) is obtained by the direct differentiation of (2.6) and (2.8). 

The right-hand sides of the relation in (2.10), (2.11) may be represented as the 
expansion in full vertices r4,0, r3,0, r2,17 r2.10, by excluding the bare vertices rCb = 624, 
rfb = 6 q u  and the bare angle vertex T(O) = 1 from the perturbation expansions and 
summing the self-energy parts. The resulting equations for Tm,n determine their depen- 
dence upon t and q in the region Fz,o > 0. It is convenient to use the expressions 

2,1 
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previously obtained for T,,, at q = 0, t > 0 (Sakhnenko and Timonin 1983) as the 
boundary conditions (at cp = 0 , l P I  vertices coincide with the ordinary connected verti- 
ces). To find Tm,n at t < 0 we proceed from the variables t, cp to the variables r ,  cp: 

r = F 2 , 0 ( t ,  cp) = lim [ G - ' ( p ,  U /  = O ) ] .  
P - r O  

(2.18) 

Asr( t ,  cp$) = x - ' ( t ) ,  thelinesr(t ,  cp) = constanthavetheformshowninfigure2. From 
the equality 

( a t / a c p ) ,  = - ( d r / d c p ) , ( a r / a t ) ; '  = - F3,0F;,', (2.19) 

the derivatives of T,., with respect to cp along these lines are obtained from (2.10), 
(2.11): 

- F3,OFi.:rm,n+l (PI 3 . . . 7 Pm; K1, . . . 1 Kn, 0) .  (2.20) 

The dependence of r,., upon r ,  cp at r > 0 may be obtained by integration of (2.20) 
regarding the relations in (2.9) for F3,0 and 

Tm, , (P1, .  . . , P,; IC1,. . . , K,;  r ,  q = 0 )  = rm,n(P1,*.  . , P,; K1,.  . . , K,; r )  (2.21) 

where F,,, are the vertices at q = 0, t > 0, represented as the functions of r = r ( z ,  0). 
Thenr = ~ ( t ,  q1)maybedeterminedimplicitlybyintegrationof(2.19) using theobtained 

with the boundary conditions 

F 3 , 0 ( r ,  9) and F 2 , 1 ( r 9  9): 

(2.22) 

In addition, we assume that on the lines r ( z ,  cp) = constant up to cp = cps the following 
estimates are valid: 

Therefore, when expanding the right-hand sides of (2.20), we may consider the vertices 
and r3,0 to be small owing to a small value of l?4,0 proportional to invariant charge 
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Figure 3. 

(Patashinsky and Pokrovsky 1982). Then, having substituted in (2.20) the contributions 
of the lowest order in r4,0 and r3,0 depicted by the diagrams in figure 3 we obtain 

Using (2.23), this results in 

The equations for G(P;  r ,  0) and the expressions in terms of G(P;  r ,  0) for vertices 
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pm,n present in (2.25) were obtained by Sakhnenko and Timonin (1983) where they had 
the following designations: 

r4,0(f', r )  = 6ri(f', r )  

r2,,(0, K ;  - K ;  r )  = R ( k ,  r )  

The equality determining r = r ( t ,  q) follows from (2.9), (2.20) and (2.24): 

F2;.1(f', r )  = T(f', r )  f0.2(K, r )  = - C ( K ,  r )  

l=4,0(r) = 6 r o ( ~ ) .  
(2.26) 

l='2,1(r) = TO(r)  

t = F;,ll(r)[r - - i q 2 f b , o ( r ) ]  (2.27) 

and from the identity (dFl ,o /dcp) r  = r - F,:F3,0Fl,l with Fm,n ( r ,  q) from (2.9), (2.24) 
and (2.25) the equation of state is obtained: 

(2.28) 

Whenr > Othesolutionofthesystemof (2.27), (2.28) givesthevaluesofthespontaneous 
order parameter qs(t )  and r ( t ,  qs)  = x- ' ( t ) .  At t < 0, we have 

q: = 3rFi,h(r) -2 t  = r ~ = ~ , ~ ( r ) .  (2.29) 

(2.24) and (2.29) justify the assumed estimates in (2.23). According to Sakhnenko 
and Timonin (1983) at roexp(-2/q) 

F4b.o(r) = (16n/3)vr  F2r;,.,(r) = (r/rO)'-1'2v v = 0.60 (2.30) 

F ~ , - ,  = r q  - $ q ~ ~ F ~ ~ - , ( r )  = 0. 

r < ro = (9u/8n) ,  q = 0.02, 

so that 

r ( t ,  q s )  = x - ' ( t )  = rA-Y(-2t)Y 

q s ( t )  = ( 3 / 4 v ~ ) r ~ ' - ~ ) / ' ( - 2 2 ) - " ~ .  

y = 2v 
(2.31) 

The substitution of (2.31) into (2.25) completes the calculation of the vertices at 
z < 0. From now on we shall use the expressions for these vertices as a function of r ,  
having eliminated q s  by means of (2.29) and keeping in mind that in the final expressions 
r should be substituted by r ( z ,  qs)  from (2.31). 

3. Retarded correlators and scattering spectra below T,  

As has been explained in § 1, the dielectric tensor fluctuations complying with the 
disordered phase symmetry at all temperatures have the form 

w x ,  t )  = a[q2(x, t )  - (q2(x,  tN1. 
Hence, in both phases the tensor of light scattering spectral intensity is 

Z2(k, o) = a2 J d3x d t  exp[i(kx - u t ) ]  

To obtain I2 (k ,  o) in the framework of the quantum formalism adopted in our paper, 
we should consider Matsubara's Green function 

(3.1) 

The analytical continuation of G,(K) from discrete imaginary frequencies iol ,  ol > 0, 
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Figure 4. 

gives the retarded Green function GF(k, w ) ,  at w < T, h-’ related to 9 2 ( k ,  U) by the 
classical fluctuation-dissipative theorem 

9 * ( k ,  w )  = 0 - l  Im[GF(k, U)]. 

To obtain the diagram expansion of G2(K)  below T, we have to express it through q‘- 
correlators by extracting the average over the condensate: 

G2(K) = (G2(K> q))p = G 2 ( K  q s )  

Examining the diagram expansion of G2(K, q), we can represent it via the 1PI vertices 
considered in 0 2. In so doing we notice that reducible diagrams with angles have 1PI 
parts attached to the angles and are connected with the rest of the diagram by a tail, thus 
concurring with the contribution to the rl, vertex. Taking into account that q = dFo/  
d q  dz is the non-diagram contribution to rl,l (cf (2.6)) and that the sum of the diagrams 
with two tails represents the one-particle Green function G ( K ,  q), we finally obtain the 
G,(K, q) representation depicted in figure 4. 
The corresponding analytical expression reads 

G2(K, q) = - ru,2(K; r ,  q) + ~ ? , I ( K ;  r ,  q ) G ( K ;  r ,  q). 
Hence, using the designation of (2.26), 

G2(K) = C2(K,  qs) = C ( K ,  r )  + 4rTo’(r)R2(K, r)G(K; r ,  qS). (3.2) 
The analytical continuation of (2.35), (3.2) gives GR(k ,  w )  and G:(k, w )  at T < T,. 

Having applied the expressions obtained by Sakhnenko and Timonin (1983) for the 
vertices (equation (2.26)) and GR(k ,  w ,  r ,  q = 0) at 

ro exp(-2/q) < max(r, k 2 ,  M w 2 ,  2Lw) < ro (3.3) 
we get 

G i ’ ( k ,  w )  = r + k 2  -2i Lo - M u 2  +$r{ [To‘ ( r )T , (k ,  w ,  r)l1’’-’ - l} 

T i 1 @ ,  W ,  r )  = g [ n ( k ,  U ,  r )  - n(k, CO, r o ) ]  + u - ~  

n ( k , o , r ) =  (1/4ni k)ln{[(S+2vr)(P+2L-iMw) 

+ i k ( P + 2 L ) ] / [ ( S + 2 g r ) ( P + 2 L  - iMu)  -ik(P+2L)]} 

S = (4r+ k 2  - 4iLo - Mw2)1/2 P = [ M k 2  + (2L -  MU)^]^/* 
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where LY = 2 - 3v is the heat capacity exponent, and the power functions and logarithm 
denote the principal branches of these functions that are analytical on the plane with the 
cut along the negative semi-axis. We recall that, in (3.3)-(3.3, r = r(t ,  9,) is given by 
(2.31). 

According to (3.5) the spectral density of Raman scattering, 

Z2(k, w) = a2w-' Im[GF(k, w)] (3.6) 
together with the contribution from two-particle fluctuations (the same as at T > T,) 
contains a contribution from the one-particle Green function. However, unlike the 
mean-field region ( r  > ro) this contribution from the one-particle Green function is 
distorted in the scaling region owing to the presence of the factor rk-"'" ( k ,  w, r )  at 
GR(k, 0). The intensity of such modified one-particle scattering is comparable in mag- 
nitude with the two-particle scattering. Indeed, the integral scattering intensity 

z2 ,,,t(k) - ~ f ( k ,  0 )  - [ ( ~ / k )  tan-'(k/2Vr)]+ 

X {l + (9a/2v)[kdrCR(k,  O)/tan-'(k/2~/r)]}. (3.7) 
At r S k 2 ,  both terms in (3.7) are of the same order, ZZint - I zl-"(l + 9a /v )  while, at r G 
k2,  the contribution from the term with GR(k, 0) becomes small. Thus the spectrum in 
the scaling region is the result of the interference of scattering by the one- and two- 
particle excitations. Also, one-particle excitations themselves are no longer quasi- 
harmonic phonons owing to the presence of the self-energy contributions in GR(k, w) 
(equation (3.4)). In this case the term with the integral over r' in (3.4) analogous to that 
present in GR(k, w)  at T > T, (Sakhnenko and Timonin 1983) may be considered to be 
the contribution from the processes of multiple scattering of soft phonons by the phonon 
density fluctuations ~ 3 q ' ~  = qI2 - (qr2 ) ,  whereas the term $r[(rR/ro)l'v-l - 11 appear- 
ing below T, is associated with the three-phonon processes allowed in the ordered phase. 

To elucidate the character of the one-particle excitations near T,, we would consider 
GR(k, o) at small r :  

r < max(k2, M u 2 ,  2Lw) G y o .  (3.8) 
In this region, GR(k, 0) does not depend upon r any longer: 

v 2 C ~ ' ( k ,  0) = v2k2 -2  i Tw - w 2  + (1 - 1/2v)Q; 

x [{I - iw/[Vv2k2 + (2 r  - iwl2 + 21-]}~/"-~ - In (3 * 9) 
~2 = M - '  r = LM-' 52; = roM- ' .  

The last term in (3.9) is the contribution from the integral over r' in (3.4). Its presence 
changes considerably the structure of the singularities of GR(k, w) in the lower semi- 
plane of the complex w, Im w < 0, where a cut between the branching points ? vk - i2 r  
corresponding to the thresholds of two-phonon difference scattering appears and the 
position of the poles changes. The latter effect is especially noticeable at small k and r: 

(3.10) 4r2 + v2k2 e (1 - 1/2v)Q;. 

In this case GR(k, w) has three poles: 

wo = - i(v2k2/6qQ;)[(4r2 + ~ ~ k ~ ) ~ / ~  + 2 r ]  q = Q ( 1 -  1/2v)( l /v  - 1) 

w, = k Q,(l- 1/2v)"2(21/4 - 1)"2 

- i ~ ( ~ - l  -21-1/v)/(1 -2'"/'')= k0.3Qo -2.8iT 
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Figure 5. Neutron scattering cross sections at T <  T, for (a )  r = 5 x lo-* Qfl, uk = lo-* Q, 
( A , r = 4 x  lO-* ro ;* , r=2 .25x  10-*r,; X , r = 1 0 - 2 r o ; - - , r = 2 . 5 x  10-3r, ,)and(b)r= 
5 x lo-' Bo, uk = 0.2 Qfl ( A ,  r = 2.25 x lo-* ro; *, r = r,; -, r = rfl; x , r = 2.5 x 

r,). 

so that at low frequencies 1 w 1 6 I woI the one-particle fluctuations are relaxing excitations, 
while at Iw /  - /w,I they are propagating excitations. The poles w,  correspond to the 
'saturated' soft phonons with approximately three times the frequency and three times 
the damping of the corresponding values on the boundary of the mean-field region where 
w e  = 5 Q, - i r .  The frequency dependences of the neutron scattering cross sections 
Zl(k, w )  - Im[GR(k, w ) ]  calculated by means of (3 .4)  are depicted in figure 5(a ) ,  
demonstrating the process of the soft-mode 'saturation' accompanied by the formation 
of the relaxing excitations as T+ T,. 

If the inequality in (3.10) is not valid, the phonon density fluctuations influences the 
displacement of the two quasi-harmonic poles of GR(k, w ) .  The scattering cross sections 
for this case are shown in figure 5(b) .  

At T < T, the behaviour of the spectral density of light scattering determined by the 
imaginary part of the correlator GF(k, w )  (equations (3.5) and (3 .6) )  is shown in figure 
6 .  The changes in the spectrum are associated with the crossover from one-particle 
scattering by soft phonons to the two-particle scattering by the phonon density fluc- 
tuations at T = T,. In this case the appearance of the central peak at v2k2 4 4r2 (figure 
6 ( a ) )  is associated with the relaxational character of the two-particle excitations while 
the peak at the frequency w = vk when v2k2 9 4r2 (figure 6 ( b ) )  corresponds to the 
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Figure 6 .  Light scattering spectrum at T < T, for ( a )  r = 5 x 
4 X lo-' ro;  *, r = 2.25 X 

Q", uk = 0.2 Po (A, r = 2.25 x 

Qn, vk = 
rl,) and ( b )  r = 5 x 

Qn ( A ,  r = 

TI); *, r = IO-' r , ) ;  x , r = 2.5 x 10-3 r,); -, r = 10-4 rn), 
rn; X ,  r = r,; -, r = 2.5 x 

scattering by the propagating phonon density fluctuations (Sakhnenko and Timonin 
1983). 

Thus, in contrast to the mean-field region r > ro where G;(k ,  o) = q ; G R ( k ,  o) and 
the spectra of the light and neutron scattering coincide, they become different in the 
scaling region. Such differences caused by rapid smearing of the soft mode in the optical 
spectra and indicating the presence of the scaling region in the vicinity of T, are found 
in crystals of lead germanate (Satija and Cowley 1982) and strontium titanate (Bruce 
and Stirling 1983). Although transitions in these crystals do not enter into the class under 
consideration (lead germanate is a ferroelectric and strontium titanate has a three- 
component order parameter), the qualitative similarity of the observed singularities is 
quite obvious. 

The quantitative description of the spectra shapes by means of (3.4) and (3.5) is 
possible for spectral phase transitions with a one-component order parameter in the 
crystals of quartz (Bruce and Cowley 1980), A1PO4 (Scott 1978) as well as in uniaxial 
ferroelectrics with the abnormally small dipole interaction of soft phonons, e.g. TSCC 
(Sugo et a1 1984) and Li2Ge,015 (Wada and Ishibashi 1983). Nevertheless, the exper- 
imental light scattering data (Bruce and Cowley 1980, Scott 1978; Sugo et a1 1984, Wada 
and Ishibashi 1983) do not allow us to make definite conclusions on the validity of the 
expression obtained for G y ( k ,  o) (equation (3.5)). It is possible only to notice the 
qualitative agreement with the behaviour shown in figure 6(a ) .  A more detailed study 
of the light and neutron scattering spectra in these crystals near T, and comparison with 
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the results obtained in the present work will make it possible to determine the boundaries 
of the scaling region and the features of critical dynamics in this region. 
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